

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Estudios Superiores Iztacala

Plan de estudios de la licenciatura en Biología

Programa de la asignatura de Biomoléculas Básico Créditos Bloque Clave Semestre Campo de **2**° 1203 **15** conocimiento Etapa Curso (X) Taller () Lab. () Modalidad T() Tipo P() T/P(X)**Sem.** () Obligatorio **(X) Optativo** () Carácter Horas Obligatorio E () **Optativo E** Semana Semestre Teóricas Teóricas 96 **Prácticas** 3 **Prácticas** 48 Total 9 **Total** 144

	Seriación	
	Ninguna (X)	
	Obligatoria ()	
Asignatura antecedente		
Asignatura subsecuente		
	Indicativa ()	
Asignatura antecedente		
Asignatura subsecuente		

α					
()h	ieti	VO	ger	iera	Ľ

El alumno integrará la estructura química de los diferentes tipos de biomoléculas,

con base en sus propiedades fisicoquímicas, para comprender su función biológica y los fundamentos de sus métodos de estudio.

Objetivos específicos:

El alumno:

- 1. Comprenderá la síntesis abiótica de los principales biomonómeros para entender el origen de las biomoléculas.
- 2. Comprenderá la estructura, propiedades fisicoquímicas y métodos de estudio de los carbohidratos para entender su importancia biológica.
- 3. Comprenderá la estructura química, propiedades fisicoquímicas y métodos de estudio de los lípidos para entender sus diferentes funciones biológicas.
- 4. Comprenderá la estructura química, propiedades fisicoquímicas y métodos de estudio de los aminoácidos y proteínas para entender sus diferentes funciones.
- 5. Relacionará las características estructurales con la actividad catalítica de las enzimas para comprender su función y participación en los procesos bioquímicos.
- 6. Comprenderá la estructura química y los métodos de estudio de los ácidos nucleicos, para explicar las funciones biológicas.
- 7. Analizará la participación de las interacciones entre las diferentes biomoléculas con base en sus características fisicoquímicas, para explicar las fuerzas responsables del ensamblaje molecular de los sistemas vivos.

Índice temático				
	Tema		Horas	
			por semestre	
		Teóricas	Prácticas	
1	El origen abiótico de los biomonómeros	9	0	
2	Carbohidratos	12	8	
3	Lípidos	15	8	
4	Aminoácidos y proteínas	24	8	
5	Enzimas	15	8	
6	Ácidos nucleicos	12	8	
7	Ensamble supramolecular	9	8	
	Total	96	48	

Contenido temático		
Temas y subtemas		
1	El origen abiótico de los biomonómeros	
	1.1 Definición de biomolécula.	
	1.2 El agua como sustrato de la vida.	
	1.3 Teorías sobre el origen abiótico de los biomonómeros.	

2 Carbohidratos

- 2.1 Ubicuidad de los carbohidratos en los sistemas biológicos y sus funciones.
- 2.2 Estructura y función de los monosacáridos.
- 2.3 Estructura y función de los oligosacáridos y glicoconjugados.
- 2.4 Estructura y función de los polisacáridos de almacén, formadores de paredes celulares y de superficie en células animales.
- 2.5 Métodos de estudio de los carbohidratos.
- 2.6 Problemas relacionados con carbohidratos en la medicina, la industria y el sector de la producción primaria.

3 Lípidos

- 3.1 Introducción general a la familia de los lípidos.
- 3.2 Estructura, propiedades y funciones de los ácidos grasos y ceras.
- 3.3 Estructura, propiedades y funciones de los acilgliceroles.
- 3.4 Estructura, propiedades y funciones de los fosfoglicéridos.
- 3.5 Estructura, propiedades y funciones de los esfingolípidos.
- 3.6 Estructura, propiedades y funciones de los isoprenoides.
- 3.7 Estructura, propiedades y funciones de esteroides y derivados.
- 3.8 Métodos de estudio de los lípidos.
- 3.9 Problemas relacionados con los lípidos en la medicina, la industria y el sector de la producción primaria.

4 Aminoácidos y proteínas

- 4.1 Estructura y clasificación de los aminoácidos y de los metabolitos secundarios derivados de aminoácidos.
- 4.2 Comportamiento iónico y propiedades ácido-básicas de los aminoácidos.
- 4.3 Técnicas de separación, identificación y cuantificación de aminoácidos.
- 4.4 Funciones generales de las proteínas.
- 4.5 Estructura primaria de las proteínas.
- 4.6 Estructura secundaria, estructuras supersecundarias y dominios.
- 4.7 Estructura terciaria.
- 4.8 Estructura cuaternaria.
- 4.9 Clasificación de proteínas según su forma y composición.
- 4.10 Características estructurales y funcionales de las proteínas con diferente actividad biológica.
- 4.11 Técnicas de estudio de las proteínas.
- 4.12 Estudio de las proteínas in silico y el uso de la bioinformática.
- 4.13 Problemas relacionados con aminoácidos y proteínas en la medicina, la industria y el sector de la producción primaria.

5 Enzimas

- 5.1 Características generales.
- 5.2 Cofactores enzimáticos.
- 5.3 Clasificación y nomenclatura de las enzimas.
- 5.4 Catálisis enzimática.
- 5.5 Cinética enzimática y la importancia de su estudio.
- 5.6 Inhibición enzimática irreversible y reversible.
- 5.7 Mecanismos de regulación enzimática.
- 5.8 Problemas relacionados con enzimas en la medicina, la industria y el sector de la producción primaria.

6 Ácidos nucleicos

- 6.1 Propiedades fisicoquímicas de las bases púricas y pirimídicas.
- 6.2 Metabolitos secundarios derivados de bases nitrogenadas.
- 6.3 Propiedades fisicoquímicas y funciones de los nucleósidos.

	6.4 Propiedades fisicoquímicas y funciones de los nucleótidos.		
	6.5 Estructura y funciones del RNA.		
	6.6 Tipos de RNA.		
	6.7 Estructura del DNA.		
	6.8 Funciones del DNA y su relación con otras biomoléculas.		
	6.9 Fisicoquímica de los ácidos nucleicos.		
	6.10 Técnicas moleculares.		
	6.11 Problemas relacionados con nucleótidos y ácidos nucleicos en la medicina, la		
	industria y el sector productivo.		
7	Ensamble supramolecular		
	7.1 Principios generales de ensamble de estructuras biológicas.		
	7.2 Moléculas anfipáticas.		
	7.3 Estructuras con un solo tipo de biomolécula.		
	7.4 Estructuras con varios tipos de biomoléculas.		

Actividades didácticas		Evaluación del aprendizaje	
Exposición	(X)	Exámenes parciales	(X)
Trabajo en equipo	(X)	Examen final	(X)
Lecturas	(X)	Trabajos y tareas	(X)
Trabajo de investigación	(X)	Presentación de tema	(X)
Prácticas (taller o laboratorio)	(X)	Participación en clase	(X)
Práctica de campo	()	Asistencia	(X)
Otras (especificar):		Otras (especificar):	
Uso de la plataforma Moodle para la revisión		Uso de la plataforma Moodle para aplica	r
de información complementaria.		exámenes y entregar tareas y trabajos.	

Perfil profesiográfico		
Título o grado	Licenciatura en Biología o áreas afines.	
Experiencia docente	Comprobable o curso de inducción a la docencia.	
Otra característica	Con experiencia en los contenidos del programa o en áreas afines.	

Bibliografía básica:

- CROWE, J. & Bradshaw, T. *Chemistry for the biosciences: the essential concepts*. 2nd Ed. USA, Oxford University Press, 2010.
- ISAI, S. Biomacromolecules. *Introduction to structure function and informatics*. USA, Wiley and Sons Publication, 2007.
- KARP, G. Cell and Molecular Biology: Concepts and Experiments. 7th Ed. USA, Wiley, 2013.
- LAZCANO, A. & Bada, J. The 1953 Stanley Miller experiment: fifty years of prebiotic organic chemistry. Origins of Life and Evolution of Biospheres. *Netherlands*, Vol. 33, No. 33, 2004, pp. 235-242.
- LUISI, P. L. La Vida Emergente. México, Metatemas/Tusquets Editores, 2006.
- LUQUE, B., Ballesteros, F., Márquez, Á. y González, M. *Astrobiología. Un puente entre el* Big Bang y *la vida.* España, Akal, 2012.
- McKEE, T. & McKEE, J. *Biochemistry: The Molecular Basis of Life*. 5th Ed. USA, Oxford University Press, 2013.
- MELVIN, A. Essentials of general organic & biological chemistry. USA, Harcourt College

- Publishers, 2001.
- MURRAY, R., Bender, D., Botham, K. y Kennelly, P. *Harper Bioquímica Ilustrada*. España, McGraw-Hill, 2013.
- NELSON, D. y Cox, M. L. Principios de Bioquímica. Barcelona, Ediciones Omega, 2009.
- STRYER, L., Berg, J., y Tymozcko, J. *Bioquímica con aplicaciones clínicas*. 7ª ed. España, Reverté, 2013.
- VOET, D., Voet, J. & Pratt, C. Fundamentals of Biochemistry: Life at the Molecular Level. USA, John Wiley & Sons Inc., 2013.
- VOLLHARDT, P. & Schore, N. Organic Chemistry: Structure and Function. USA, W. H. Freeman Co., 2011.
- ZUCKERMAN, D. Statistical Physics of Biomolecules: An Introduction. New York, USA, CRC Press, 2010.

Bibliografía complementaria:

- BAXEVANIS, A. & Ouellette, F. (Eds.). *Bioinformatics, a practical guide to the analysis of genes and proteins*. USA, Wiley-Interscience, 2005.
- BROWN T., Lemay, E., Bursten, B., Murphy, C. & Woodward, P. *Chemistry: The Central Science Central*. 12th Ed. USA, Pearson Education, 2011.
- CLAYDEN, J., Greeves, N. & Warren, S. *Organic Chemistry*. 2nd Ed.USA, Oxford University Press, 2012.
- DAHLBERG, J. & Abelson, J. (Eds.). *Mehtods in enzymology*. Vol. 181. USA, RNA Processing, specific methods/Academic Press Inc., 1990. 640 pp.
- GARCÍA-COLÍN, L., Dagdug, L., Miramontes, P. y Rojo, A. (coords). *La física biológia en México*. México, El Colegio Nacional, 2006. (Temas selectos de El Colegio Nacional).
- GOODSELL, D. The Machinery of Life. 2nd. USA, Copernicus, 2009.
- LEMKE, T., Roche, V. & Zito, W. Review of Organic Functional Groups: Introduction to Medicinal Organic Chemistry. 5th Ed. USA, Wolters Kluwer, Lippincott Williams & Wilkins, 2012.
- MILLER, S. Formation of the Buildings Blocks of Life. In J. W. Schopf (Ed.), Life's Origin. The Biginnings of Biological Evolution. California, University Press, 2002.
- SKOOG, D., West, D., Holler, J. y Crouch, S. *Fundamentos de Química analítica*. 8ª ed. USA, Thomson, 2004.
- YURIEV, E. & Ramsland, P. *Structural Glycobiology*. USA, CRC Press/Taylor and Francis group, 2013.
- ZARZA, E. Introducción a la Bioquímica. México, Trillas, 2009.